Function spaces and one point extensions for the construct of metered spaces
نویسندگان
چکیده
The construct M of metered spaces and contractions is known to be a superconstruct in which all metrically generated constructs can be fully embedded. We show that M has one point extensions and that quotients in M are productive. We construct a Cartesian closed topological extension of M and characterize the canonical function spaces with underlying sets Hom(X,Y ) for metered spaces X and Y . Finally we obtain an internal characterization of the objects in the Cartesian closed topological hull of M. © 2005 Elsevier B.V. All rights reserved. MSC: 54E15; 54C35; 54B30; 18D15; 18B25
منابع مشابه
One-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملExtensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces
The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.
متن کاملRandom coincidence point results for weakly increasing functions in partially ordered metric spaces
The aim of this paper is to establish random coincidence point results for weakly increasing random operators in the setting of ordered metric spaces by using generalized altering distance functions. Our results present random versions and extensions of some well-known results in the current literature.
متن کامل$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کامل